Image and Video Recovery

Prof. Aggelos K. Katsaggelos

Northwestern University Department of EECS Evanston, IL 60208-3118 aggk@eecs.northwestern.edu http://www.eecs.northwestern/edu/~aggk/

Image and Video Recovery

- Part I: Image Restoration

 deterministic approaches
 stochastic approaches

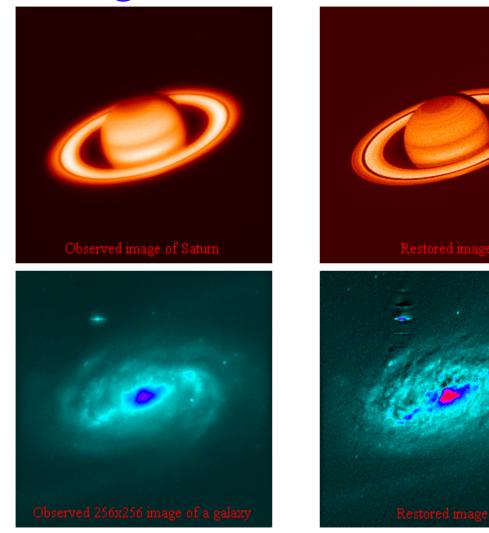
 Part II: Recovery of Compressed Images and Video
 Concealment of Compressed Images and Video
 - Video Resolution Enhancement

Introduction

- Recovery vs. Restoration vs. Enhancement
- History of the Field
- Classification of Approaches
- "Classical" Applications
- "New" Applications

The Image Restoration Problem

The Image Restoration Problem



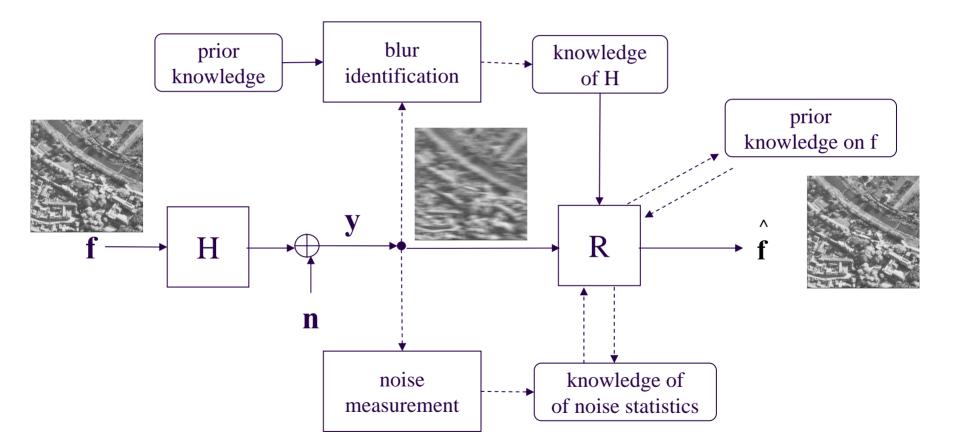
The Image Restoration Problem

<u>original</u>

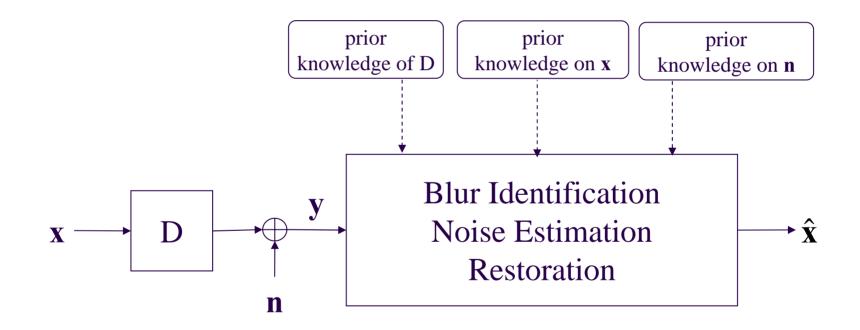
<u>degraded</u>

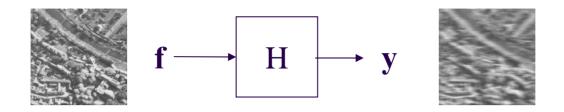
<u>restored</u>

Degradation / Restoration System



Degradation/ Restoration System





Known

Problem Type

H, y f, y f, H y y, H partially restoration -- an inverse problem system identification system implementation blind restoration semi-blind restoration

Motion estimationDisparity estimationBoundary detection through differentiation

<u>Inverse</u> problems

Applications

- space exploration, HST
- medicine (diagnostic x-rays, sinograms)
- nondestructive testing
- commercial, digital photography
- (video) printing
- resolution enhancement
- multi-channel/spectral recovery
- error concealment
- restoration of compressed images

Types of Degradation

motion

- atmospheric turbulence
- out-of-focus lens
- finite resolution of instruments
- quantization
- transmission errors

Steps in Restoration

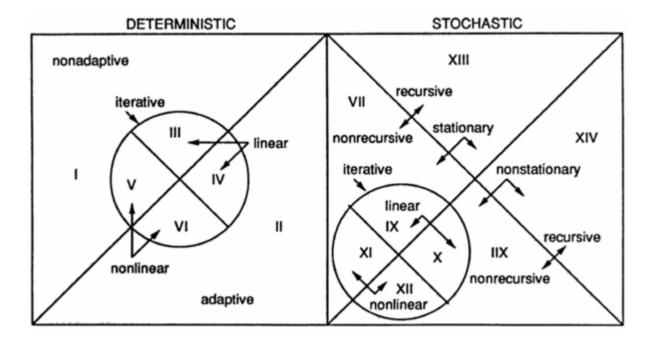
Choose appropriate degradation model

(non)-linear, space (in)variant
noise additive, signal (in)dependent

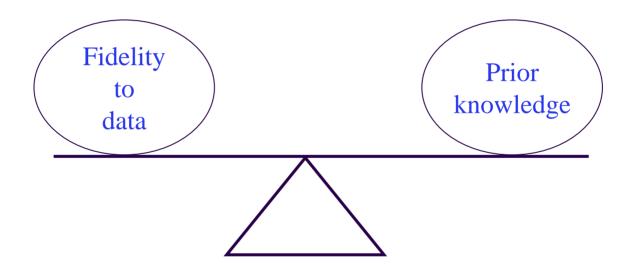
Regularize the problem
Choose appropriate solution approach

direct, iterative, recursive, spatial domain, frequency domain

Classification of Restoration Techniques



Regularization Principle



Degradation Model

$$y(i,j) = H[f(i,j)] + n(i,j)$$

noisy-blurred observed image

degradation operator

source or original image noise component

In many applications H[] can be well approximated by an Linear Space-Invariant (LSI) system and the noise by an additive and signal independent process

Representative Degradations

 $h(i) = \begin{cases} \frac{1}{L} \\ 0 \end{cases}$

Atmospheric turbulence:

for
$$-\frac{L}{2} \le i \le \frac{L}{2}$$

otherwise
 $h(i, j) = K \exp\left(-\frac{i^2 + j^2}{2\sigma^2}\right)$

Out of focus:

1-D Motion:

$$h(i,j) = \begin{cases} \frac{1}{\pi R} & \text{f} \\ 0 & 0 \end{cases}$$

(1

for
$$\sqrt{i^2 + j^2} \le R$$

otherwise

Pill-box:

$$h(i, j) = \begin{cases} \frac{1}{L^2} & \text{for } -\frac{L}{2} \le i, j \le \frac{L}{2} \\ 0 & \text{otherwise} \end{cases}$$

Objective degradation/restoration metrics

Blurred Signal-to-Noise Ratio (BSNR)

$$BSNR = 10\log_{10}\left\{\frac{\frac{1}{MN}\sum_{i}\sum_{j}\left[g(i,j) - \overline{g}(i,j)\right]^{2}}{\sigma_{n}^{2}}\right\}$$

 $g(i, j) = y(i, j) - n(i, j) \qquad \sigma_n^2: \text{ noise variance}$ $\overline{g}(i, j) = E\{g(i, j)\}$

Improvement in Signal-to-Noise Ratio (ISNR)

ISNR = 10log₁₀
$$\left\{ \frac{\sum_{i} \sum_{j} [f(i, j) - y(i, j)]^{2}}{\sum_{i} \sum_{j} [f(i, j) - \hat{f}(i, j)]^{2}} \right\}$$

Matrix-vector notation

 By stacking (lexicographically) the observed image into a vector

 $\mathbf{y} = \mathbf{H}\mathbf{f} + \mathbf{n}$

LSI degradation model

 $y(i,j) = \sum_{m=0}^{M-1} \sum_{n=0}^{M-1} f(m,n)h(i-m,j-n) + n(i,j) = f(i,j) * h(i,j) + n(i,j)$

• H is a *block circulant* matrix

$$\mathbf{H} = \begin{bmatrix} \mathbf{H}_{0} & \mathbf{H}_{M-1} & \dots & \mathbf{H}_{1} \\ \mathbf{H}_{1} & \mathbf{H}_{0} & \dots & \mathbf{H}_{2} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{H}_{M-1} & \mathbf{H}_{M-2} & \dots & \mathbf{H}_{0} \end{bmatrix}$$

Spectral Properties of Block Circulant Matrices

$$\mathbf{H} = \mathbf{W}\mathbf{D}\mathbf{W}^{1} \Longrightarrow \mathbf{D} = \mathbf{W}^{-1}\mathbf{H}\mathbf{W}$$

diagonal with elements the stacked values of the 2D DFT of h(i, j)

stacked 2D DFT of the image f(i, j)

$y=Hf+n\Rightarrow y=WDW^{1}f+n\Rightarrow W^{-1}y=DW^{-1}f+W^{-1}n\Rightarrow$

Discrete Frequency Domain Representation

$$Y(u,v) = H(u,v)F(u,v) + N(u,v), \quad u,v = 0,1,...,M-1$$

Inverse Filter

minimize

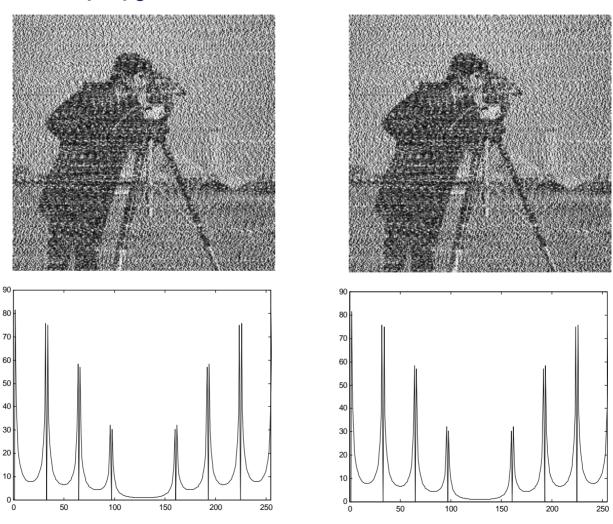
$$J(\mathbf{f}) = \left\| \mathbf{n}(\mathbf{f}) \right\|^2 = \left\| \mathbf{y} - \mathbf{H}\mathbf{f} \right\|^2$$

 $\frac{\partial J(\mathbf{f})}{\partial \mathbf{f}} = 0 \Rightarrow \mathbf{H}^{\mathrm{T}} \mathbf{H} \mathbf{f} = \mathbf{H}^{\mathrm{T}} \mathbf{y} \Rightarrow \mathbf{f} = (\mathbf{H}^{\mathrm{T}} \mathbf{H})^{+} \mathbf{H} \mathbf{y}$

• **H** circulant:

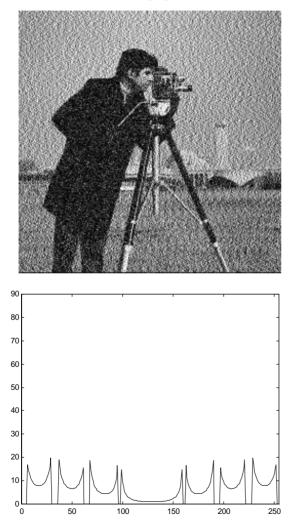
$$F(u,v) = \begin{cases} \frac{H^*(u,v)Y(u,v)}{|H(u,v)|^2} & |H(u,v)| \neq 0 \ (\geq T) \\ 0 & |H(u,v)| = 0 \ (< T) \end{cases}$$

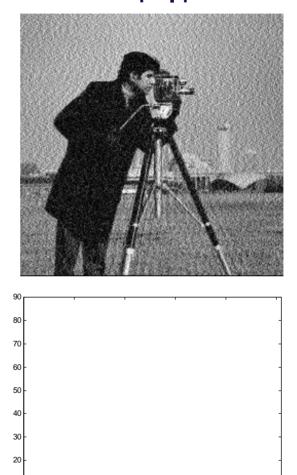
Thresholded inverse filter, 1D blur over 8 pixels, BSNR=20 dB. T= 10^{-16} T=.01

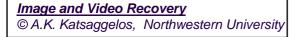


Thresholded inverse filter, 1D blur over 8 pixels, BSNR=20 dB.

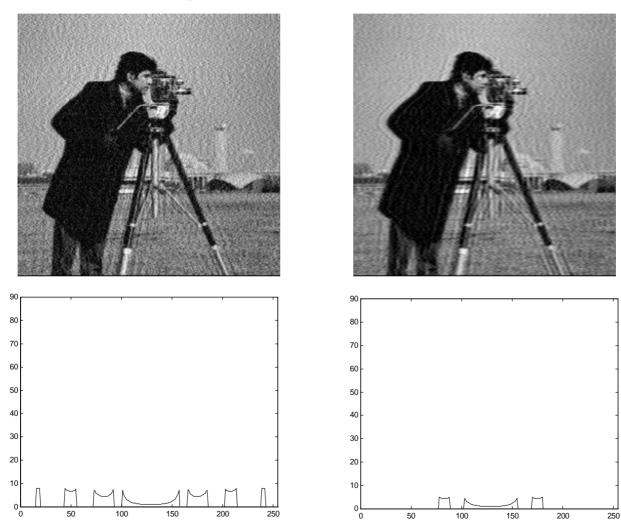
T=.05







Thresholded inverse filter, 1D blur over 8 pixels, BSNR=20 dB. T=.125 T=.2



Constrained Least-Squares Filter

minimize

$$J(\mathbf{f}) = \left\| \mathbf{n}(\mathbf{f}) \right\|^2 = \left\| \mathbf{y} - \mathbf{H}\mathbf{f} \right\|^2$$

subject to

$$\left\|\mathbf{Cf}\right\|^2 < \varepsilon$$

• min
$$\left(\left\| \mathbf{y} - \mathbf{H}\mathbf{f} \right\|^2 + \alpha \left\| \mathbf{C}\mathbf{f} \right\|^2 \right) \Rightarrow \mathbf{f} = \left(\mathbf{H}^{\mathsf{T}}\mathbf{H} + \alpha \mathbf{C}^{\mathsf{T}}\mathbf{C} \right)^+ \mathbf{H}^{\mathsf{T}}\mathbf{y}$$

- igstarrow C is a high-pass filter, such as the 2D Laplacian
- for **H** and **C** circulant:

$$F(u,v) = \frac{H^{*}(u,v)}{|H(u,v)|^{2} + \alpha |C(u,v)|^{2}} Y(u,v)$$

C 2D Laplacian

$$\mathbf{C} = \begin{bmatrix} 0.00 & 0.25 & 0.00 \\ 0.25 & -1.00 & 0.25 \\ 0.00 & 0.25 & 0.00 \end{bmatrix}$$

$|H(u,v)|^2$ of horizontal motion blur over 8 pixels

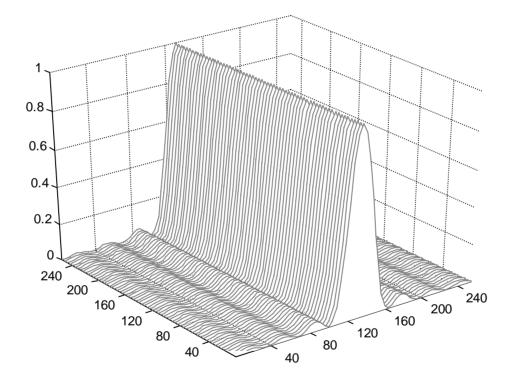
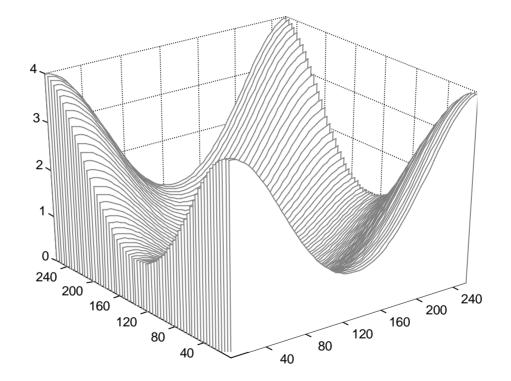


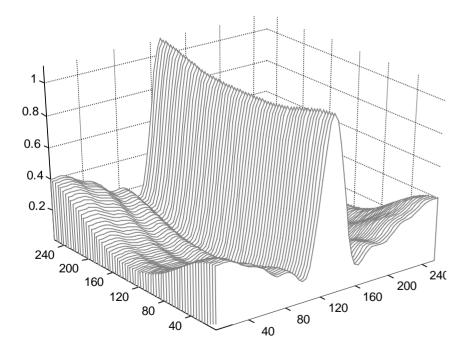
Image and Video Recovery		
© A.K. Katsaggelos,	Northwestern University	

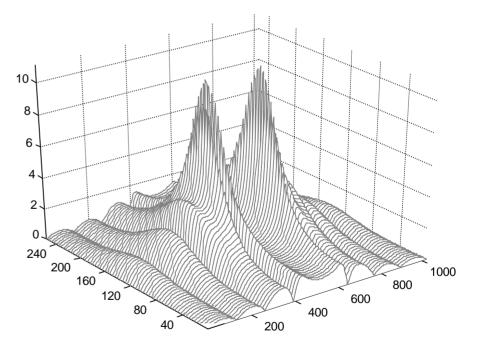
Magnitude squared of the frequency response of a 2D Laplacian $|C(u,v)|^2$



$$|H(u,v)|^2 + .1 \cdot |C(u,v)|^2$$

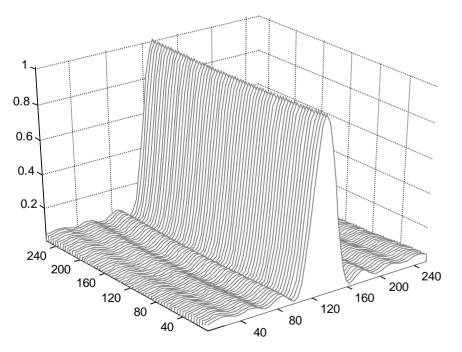
$$\frac{\left|\frac{H^*(u,v)}{\left|H(u,v)\right|^2 + .1 \cdot \left|C(u,v)\right|^2}\right|$$

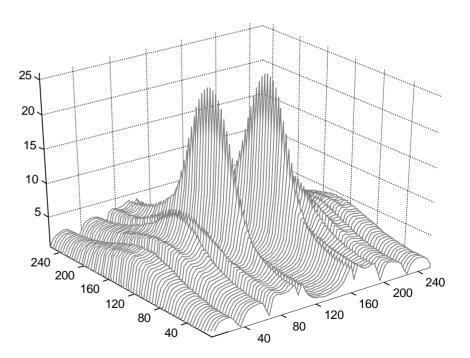




$$|H(u,v)|^2$$
 + .01 $\cdot |C(u,v)|^2$

$$\frac{H^{*}(u,v)}{|H(u,v)|^{2} + .01 \cdot |C(u,v)|^{2}}$$





Set Theoretic Approach

• Find a solution belonging to both sets

$$Q_{\mathbf{f}|\mathbf{y}} = \{\mathbf{f} \mid \left\|\mathbf{y} - \mathbf{H}\mathbf{f}\right\|^2 \le E^2\}$$
$$Q_{\mathbf{f}} = \{\mathbf{f} \mid \left\|\mathbf{C}\mathbf{f}\right\|^2 \le \varepsilon^2\}$$

One Solution Approach: Center of ellipsoid bounding the intersection

$$\mathbf{f} = \left(\mathbf{H}^{\mathrm{T}}\mathbf{H} + \alpha \mathbf{C}^{\mathrm{T}}\mathbf{C}\right)^{+}\mathbf{H}^{\mathrm{T}}\mathbf{y} \qquad \alpha = (\varepsilon/E)^{2}$$

Another Solution Approach: Alternate projections onto convex sets

$$\mathbf{f}_{\mathbf{k}+1} = P_1 P_2 \mathbf{f}_{\mathbf{k}}$$
$$P_1 \mathbf{f} = \mathbf{f} + \lambda_1 (\mathbf{I} + \lambda_1 \mathbf{H}^{\mathsf{T}} \mathbf{H})^{-1} \mathbf{H}^{\mathsf{T}} (\mathbf{y} - \mathbf{H} \mathbf{f})$$
$$P_2 \mathbf{f} = [\mathbf{I} - \lambda_2 (\mathbf{I} + \lambda_2 \mathbf{C}^{\mathsf{T}} \mathbf{C})^{-1} \mathbf{C}^{\mathsf{T}} \mathbf{C}] \mathbf{f}$$

Set Theoretic Recovery Principle

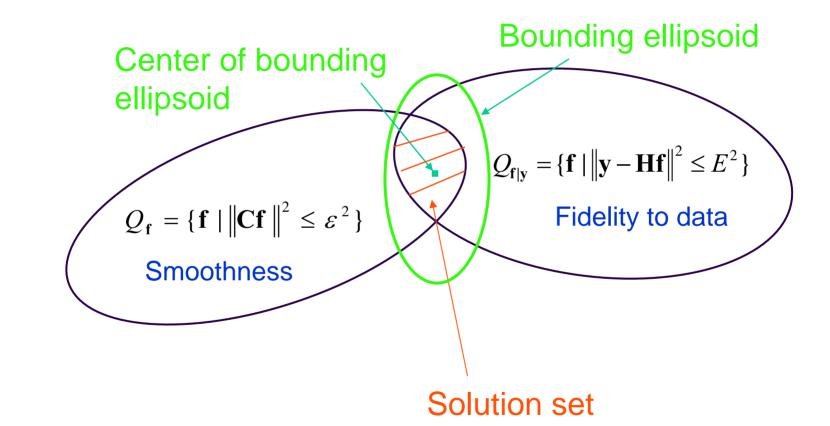
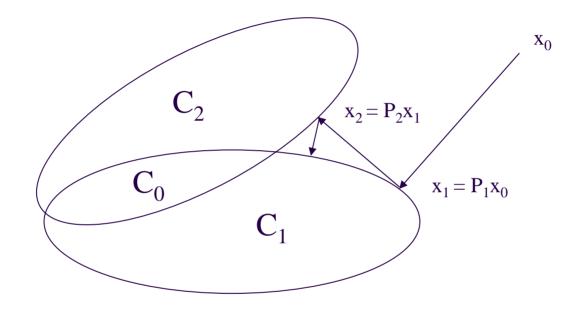


Image and Video Recovery		
© A.K. Katsaggelos,	Northwestern University	

POCS Algorithm



For C_i , i = 1, 2, ..., m, convex and closed $\mathbf{f}_k = P_m \dots P_2 P_1 \mathbf{f}_{k-1}$, \mathbf{f}_0 arbitrary,

then

$$\mathbf{f}_{\mathbf{k}} \to \mathbf{f}^* \in C_0 \equiv \bigcap_{i=1}^m C_i$$

Iterative Restoration Algorithms

- There is no need to explicitly implement the inverse of an operator.
- The restoration process is monitored as it progresses.
- The number of iterations can be used as a means of regularization
- The effects of noise can be controlled in each iteration.
- They can be applied in cases of spatially varying or nonlinear degradations or in cases where the type of degradation is completely unknown (blind restoration).

Basic Approach

Find the root of $\Phi(\mathbf{f})$

Successive Approximations Iteration

$$\begin{aligned} \mathbf{f}_0 &= \mathbf{0} \\ \mathbf{f}_{k+1} &= \mathbf{f}_k + \beta \, \Phi(\mathbf{f}_k) \\ &= \Psi(\mathbf{f}_k) \end{aligned}$$

Basic Approach

Find root(s) of $\Phi(\mathbf{f})$

Successive Approximations Iteration

$$\begin{aligned} \mathbf{f}_0 &= \mathbf{0} \\ \mathbf{f}_{k+1} &= \mathbf{f}_k + \beta \, \Phi(\mathbf{f}_k) \\ &= \Psi(\mathbf{f}_k) \end{aligned}$$

Convergence

The successive approximations iteration converges to the unique fixed point \mathbf{f}^* , i.e., $\Psi(\mathbf{f}^*) = \mathbf{f}^*$, if $\Psi(\mathbf{f})$ is a *contraction*

$$\left\|\Psi(\mathbf{f}_1) - \Psi(\mathbf{f}_2)\right\| \le \eta \left\|\mathbf{f}_1 - \mathbf{f}_2\right\| \quad \text{for} \quad \eta \le 1 \text{ and any norm} \quad \left\|\cdot\right\|$$

Basic Approach

Find root(s) of $\Phi(\mathbf{f})$

Successive Approximations Iteration with Constraints

 $\begin{aligned} \mathbf{f}_{0} &= \mathbf{0} \qquad \text{Constraint or} \\ \tilde{\mathbf{f}}_{k} &= C \mathbf{f}_{k} \\ \tilde{\mathbf{f}}_{k+1} &= \tilde{\mathbf{f}}_{k} + \beta \Phi(\tilde{\mathbf{f}}_{k}) = \Psi(C \mathbf{f}_{k}) \end{aligned}$

Convergence

The successive approximations iteration converges to the unique fixed point if the concatenation of operators ΨC is a *contraction*

Basic Iteration

$$\Phi(\mathbf{f}) = \mathbf{y} - \mathbf{H}\mathbf{f}$$

$$\mathbf{f}_{k+1} = \mathbf{f}_k + \beta(\mathbf{y} - \mathbf{H}\mathbf{f}_k) = \beta \mathbf{y} + (\mathbf{I} - \beta \mathbf{H})\mathbf{f}_k$$

Frequency Domain Iteration (H block circulant)

$$F_{k+1}(u,v) = \beta Y(u,v) + (1 - \beta H(u,v))F_k(u,v)$$

Convergence

$$F_{k}(u,v) = R_{k}(u,v)Y(u,v)$$

$$R_{k}(u,v) = \beta \sum_{l=0}^{k-1} (1-\beta H(u,v))^{l}$$
if $|1-\beta H(u,v)| < 1$
or $0 < \beta < \frac{2}{H_{\max}(u,v)}$

$$\lim_{k \to \infty} R_{k}(u,v) = \lim_{k \to \infty} \beta \frac{1-(1-\beta H(u,v))^{k}}{1-(1-\beta H(u,v))} = \begin{cases} \frac{1}{H(u,v)} & H(u,v) \neq 0 \\ R_{k}\beta & H(u,v) = 0 \end{cases}$$

Least Squares (LS) Iteration

$$\Phi(\mathbf{f}) = \frac{1}{2} \nabla_{\mathbf{f}} \| \mathbf{y} - \mathbf{H}\mathbf{f} \|^{2}$$

$$\mathbf{f}_{\mathbf{k}+1} = \mathbf{f}_{\mathbf{k}} + \beta \mathbf{H}^{\mathrm{T}} (\mathbf{y} - \mathbf{H}\mathbf{f}_{\mathbf{k}})$$

$$= \beta \mathbf{H}^{\mathrm{T}} \mathbf{y} + (\mathbf{I} - \beta \mathbf{H}^{\mathrm{T}} \mathbf{H}) \mathbf{f}_{\mathbf{k}}$$

Frequency Domain Iteration (H block circulant)

$$F_{k+1}(u,v) = \beta H^*(u,v)Y(u,v) + (1-\beta |H(u,v)|^2)F_k(u,v)$$

Convergence

$$R_{k}(u,v) = \beta \sum_{l=0}^{k-1} \left(1 - \beta |H(u,v)|^{2} \right)^{l} H^{*}(u,v)$$
$$= \beta \frac{1 - (1 - \beta |H(u,v)|^{2})^{k}}{1 - (1 - \beta |H(u,v)|^{2})} H^{*}(u,v)$$

sufficient condition for convergence

$$|1 - \beta |H(u,v)|^2 | < 1$$
, or $0 < \beta < \frac{2}{\max_{u,v} |H(u,v)|^2}$

$$\lim_{k \to \infty} R_k(u, v) = \lim_{k \to \infty} \beta \frac{1 - (1 - \beta |H(u, v)|^2)^k}{1 - (1 - \beta |H(u, v)|^2)} H^*(u, v) = \begin{cases} \frac{1}{H(u, v)} & H(u, v) \neq 0\\ 0 & H(u, v) = 0 \end{cases}$$

Figure 1: Residual error versus number of iterations for the iterative LS algorithm; 1D motion blur over 8 pixels, no noise.

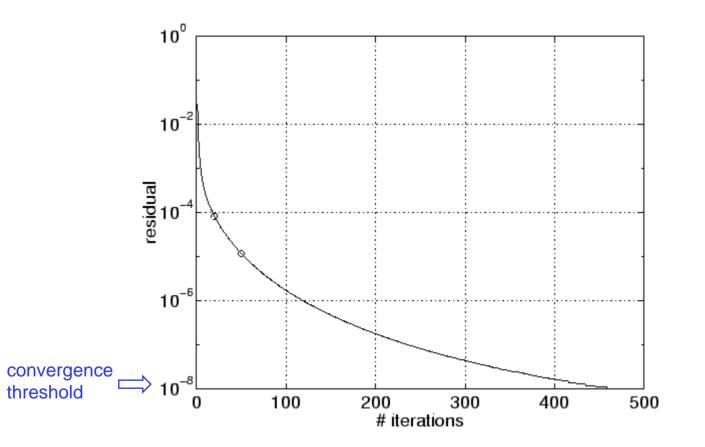
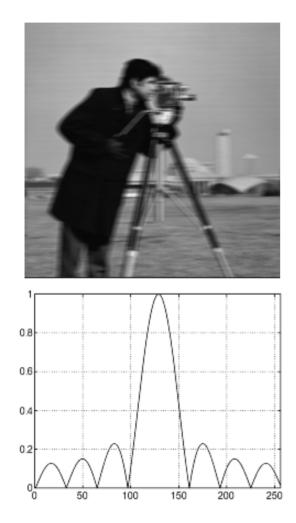


Fig. 2(a): (I) 1D motion blur over 8 pixels; (r) iterative LS restoration, k=20, ISNR=4.03 dB.



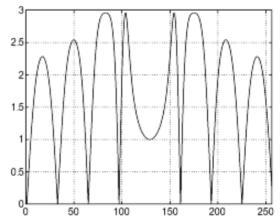
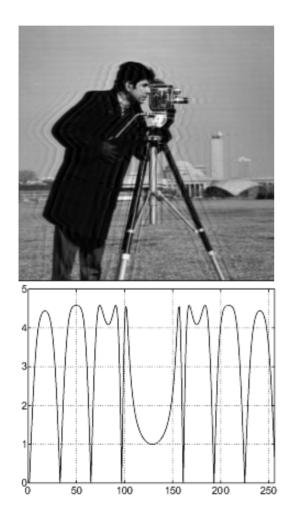


Fig. 2(b): iterative LS restorations: (I) k=50, ISNR=6.22 dB; (r) k=465, ISNR=11.58 dB.



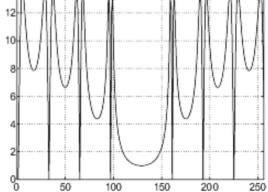
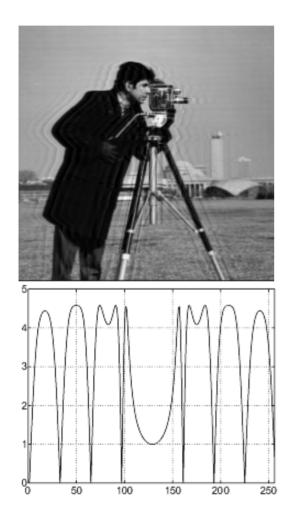
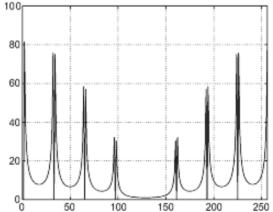


Fig. 2(c): iterative LS restorations: (I) k=465, ISNR=11.58 dB; (r) direct inverse, ISNR=15.50 dB.





Ringing Artifacts

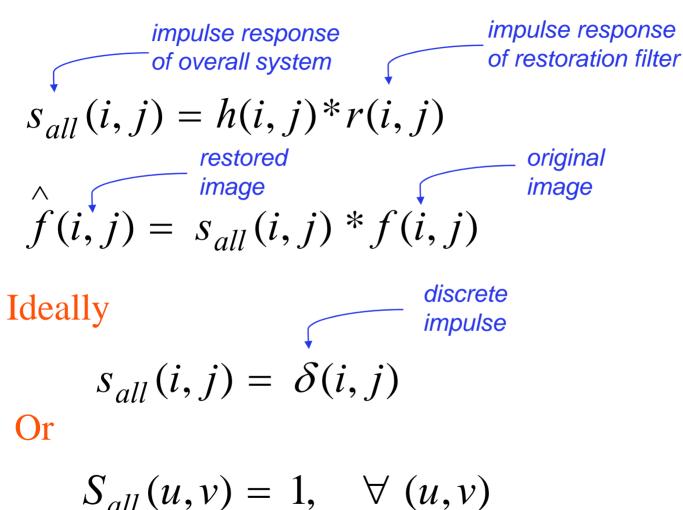
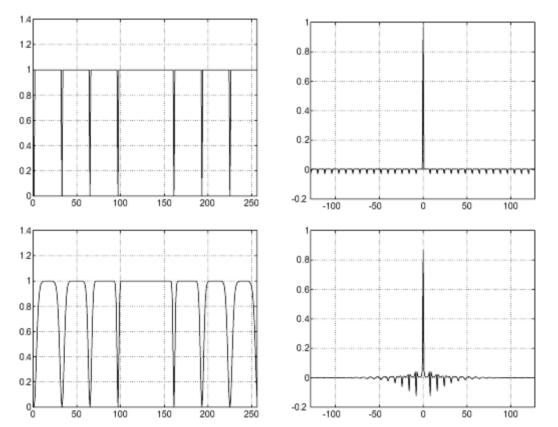


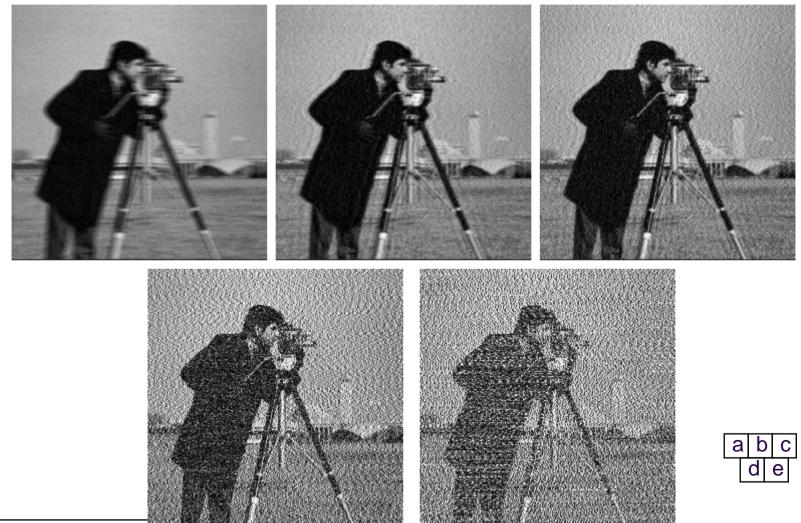
Fig. 3: 1D motion blur over 8 pixels; (a), (b): $S_{all}(u,0)$ and $s_{all}(i,0)$ for the direct inverse filter; (c) and (d): $S_{all}(u,0)$ and $s_{all}(i,0)$ for the iterative LS restoration algorithm.



а	b	
С	d	

Fig. 4: (a) 1D motion blur over 8 pixels, BSNR=20dB; (b)-(d) iterative LS restorations: (b) k=20, ISNR=1.83 dB; (c) k=50, ISNR=-0.30 dB; (d) k=1376,

ISNR=-9.06 dB; (e) direct inverse, ISNR=-12.09 dB.



Constrained Least Squares (CLS) Iteration

$$\Phi(\mathbf{f}) = \frac{1}{2} \nabla_{\mathbf{f}} \left(\|\mathbf{y} - \mathbf{H}\mathbf{f}\|^{2} + \alpha \|\mathbf{C}\mathbf{f}\|^{2} \right)$$
$$\mathbf{f}_{\mathbf{k}+1} = \beta \mathbf{H}^{\mathrm{T}}\mathbf{y} + (\mathbf{I} - \beta (\mathbf{H}^{\mathrm{T}}\mathbf{H} + \alpha \mathbf{C}^{\mathrm{T}}\mathbf{C}))\mathbf{f}_{\mathbf{k}}$$

Frequency Domain Iteration (H, C block circulant)

$$F_{k+1}(u,v) = \beta H^*(u,v)Y(u,v) + (1 - \beta (|H(u,v)|^2 + \alpha |C(u,v)|^2))F_k(u,v)$$

Convergence

$$R_{k}(u,v) = \beta \sum_{l=0}^{k-1} \left(1 - \beta \left(\left| H(u,v) \right|^{2} + \alpha \left| C(u,v) \right|^{2} \right) \right)^{l} H^{*}(u,v)$$

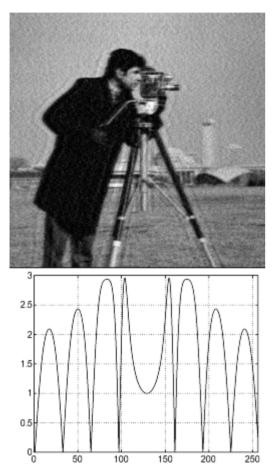
sufficient condition for convergence

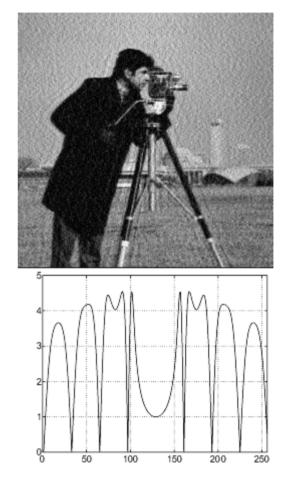
$$\left|1-\beta\left(\left|H(u,v)\right|^{2}+\alpha\left|C(u,v)\right|^{2}\right)\right|<1$$

$$\lim_{k \to \infty} R_k(u,v) = \begin{cases} \frac{H^*(u,v)}{|H(u,v)|^2 + \alpha |C(u,v)|^2} & |H(u,v)|^2 + \alpha |C(u,v)|^2 \neq 0\\ 0 & |H(u,v)|^2 + \alpha |C(u,v)|^2 = 0 \end{cases}$$

Image and Video Recovery		
© A.K. Katsaggelos,	Northwestern	University

Fig. 5: Restorations of a noisy-blurred image (1D motion blur over 8 pixels, BSNR=20dB) and corresponding |H(u,0)|; (a)-(b) iterative CLS restorations, with C a 2D Laplacian and α =0.01: (a) k=20, ISNR=2.12 dB; (b) k=50, ISNR=0.98 dB.

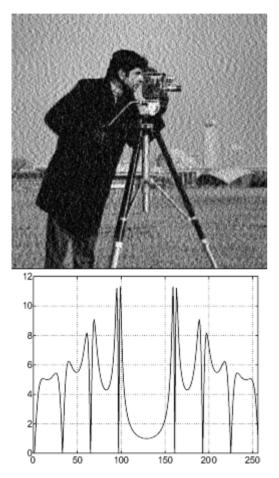


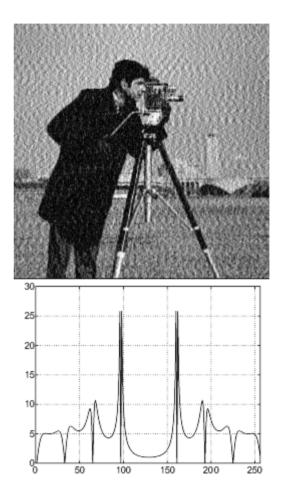


a b

Fig. 5: Restorations of a noisy-blurred image (1D motion blur over 8 pixels, BSNR=20dB) and corresponding |H(u,0)|; (b) iterative CLS restoration with C a 2D Laplacian, $\alpha = 0.01$, k=330, ISNR=-1.01 dB; (d) direct CLS

restoration, ISNR=-1.64 dB.





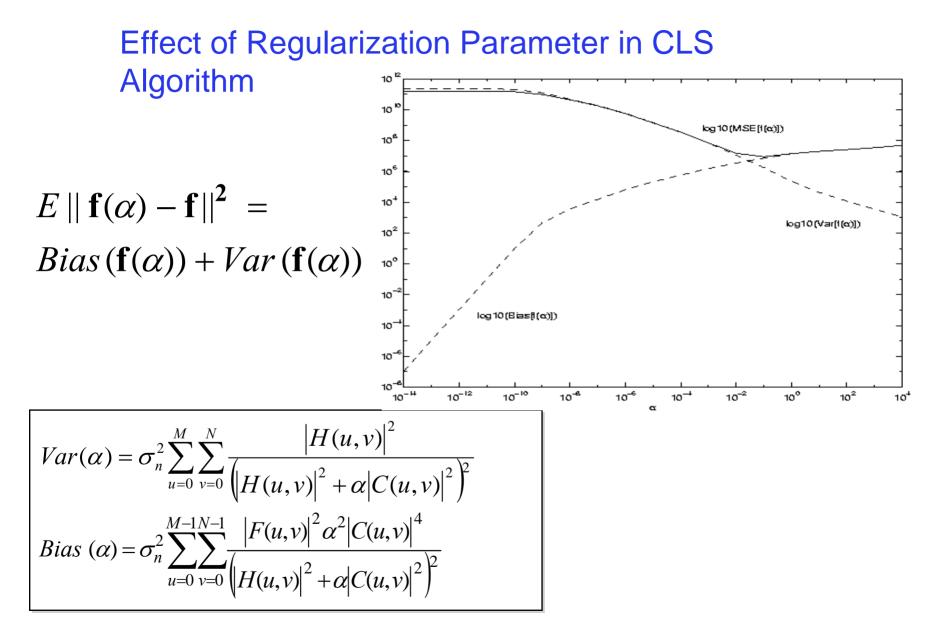
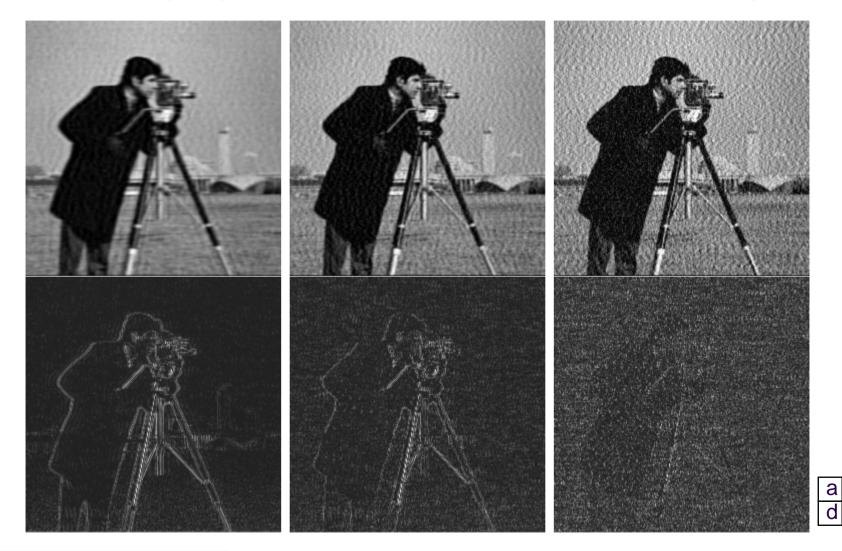


Fig. 6: Direct CLS restorations of a noisy-blurred image (1D motion blur over 8 pixels, BSNR=20dB) with α equal to (a) 1, (b) 01., (c) 0.01; (d)-(f)

corresponding |original-restored| linearly mapped to the [32,255] range.



b C

Spatially Adaptive Constrained Least Squares Iteration

$$\Phi(\mathbf{f}) = \frac{1}{2} \nabla_{\mathbf{f}} \left(\left\| \mathbf{y} - \mathbf{H} \mathbf{f} \right\|_{\mathbf{W}_{1}}^{2} + \alpha \left\| \mathbf{C} \mathbf{f} \right\|_{\mathbf{W}_{2}}^{2} \right)$$
$$\mathbf{f}_{\mathbf{k}+1} = \beta \mathbf{H}^{\mathrm{T}} \mathbf{W}_{1}^{\mathrm{T}} \mathbf{W}_{1} \mathbf{y} + (\mathbf{I} - \beta (\mathbf{H}^{\mathrm{T}} \mathbf{W}_{1}^{\mathrm{T}} \mathbf{W}_{1} \mathbf{H} + \alpha \mathbf{C}^{\mathrm{T}} \mathbf{W}_{2}^{\mathrm{T}} \mathbf{W}_{2} \mathbf{C})) \mathbf{f}_{\mathbf{k}}$$

Choice of weights

- $W_1 = 1 W_2, W_2 = V$ (the visibility matrix)
 - $\mathbf{V} \approx 1/(\sigma^2)$ (measure of the local activity)

Fig. 7: Restorations of a noisy-blurred image (1D motion blur over 8 pixels, BSNR=20dB); (a) iterative adaptive CLS; (b) iterative CLS; (c) entries of visibility matrix linearly mapped to the [32-255] range; (d) [fig. a - fig. b]

linearly mapped to the [32,255] range.

a b c d

Fig. 7: (a) original signal; (b) blurred signal by 1D motion blur over 8 samples; (c) iterative LS with positivity constraint; (d) iterative LS without positivity constraint.

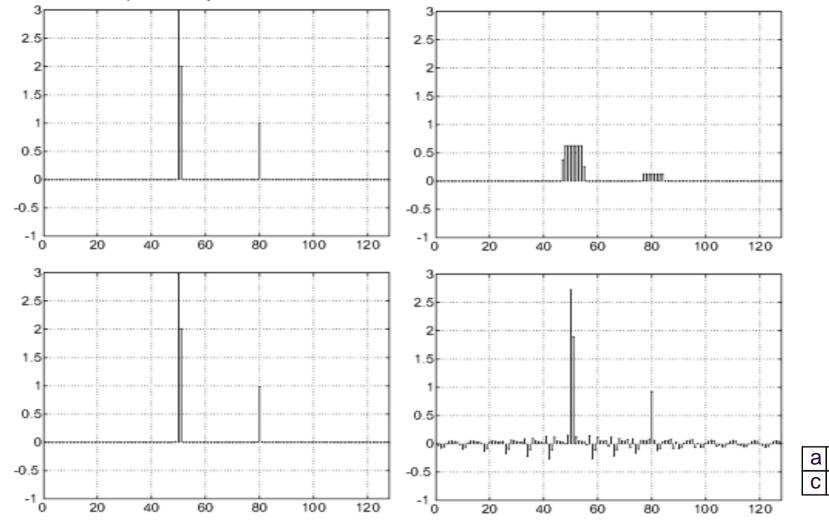
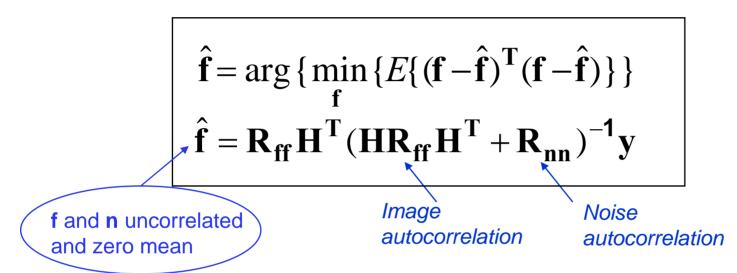


Image and Video Recovery © A.K. Katsaggelos, Northwestern University b

d

Wiener Filter



Frequency Domain (all matrices block circulant)

$$\hat{F}(u,v) = \frac{H^*(u,v)}{|H(u,v)|^2 + S_{nn}(u,v)/S_{ff}(u,v)} Y(u,v)$$

Power spectral density of original image $S_{ff}(u,v)$ and noise $S_{nn}(u,v)$

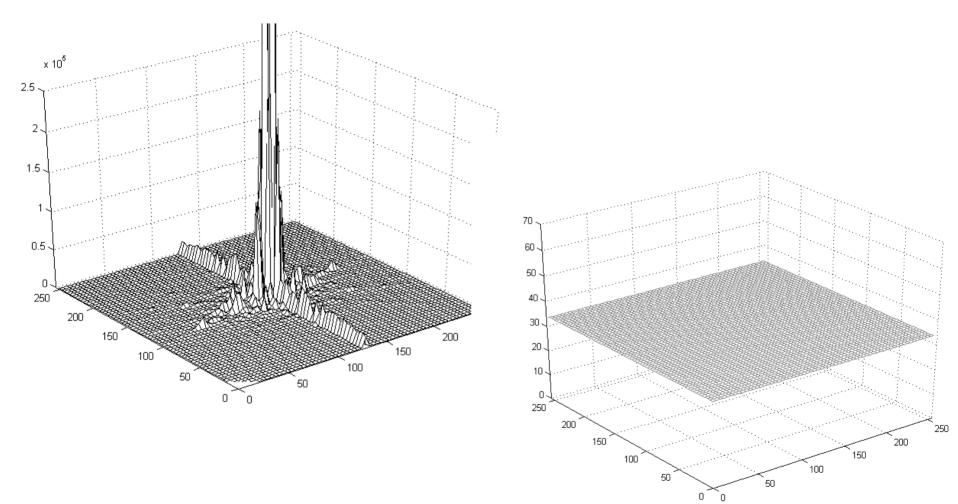
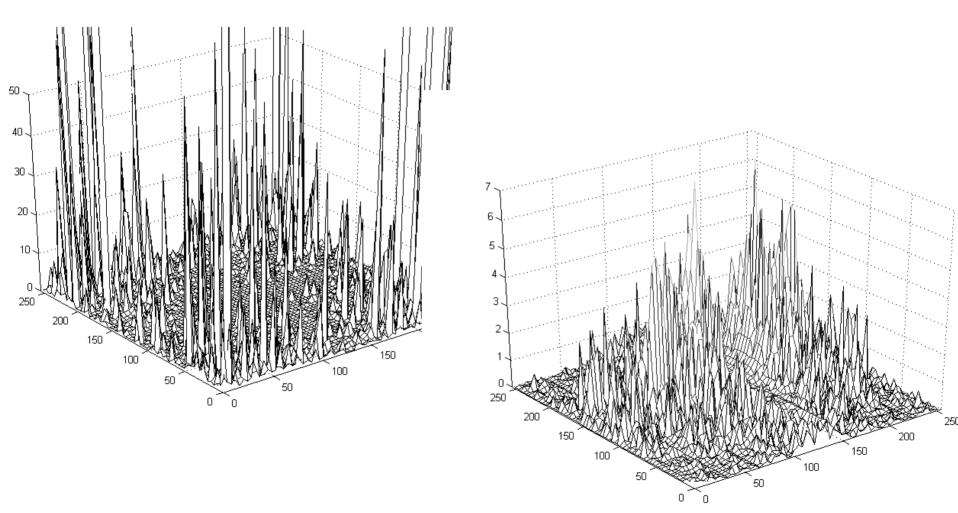
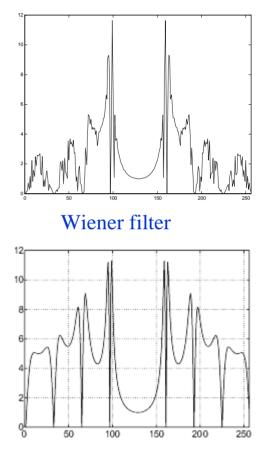


Image and Video Recovery		
© A.K. Katsaggelos,	Northwestern University	

(I) Stabilizing term $S_{nn}(u,v)/S_{ff}(u,v)$ and (r) magnitude of the frequency response of the Wiener filter



Noisy-blurred image; 1D motion blur over 8 pixels; BSNR=20dB. Wiener restoration; S_ff from original image, S_nn ideal, ISNR=3.93 dB



Iterative CLS restoration with C a 2D Laplacian, =0.01, k=330, ISNR=-1.01 dB.

Bayesian Framework:
$$p(\mathbf{f} | \mathbf{y}) = \frac{p(\mathbf{y} | \mathbf{f})p(\mathbf{f})}{p(\mathbf{y})}$$
 image model
 $\mathbf{f}_{MAP} = \arg \max p(\mathbf{f} / \mathbf{y})$

For Gaussian Image and Noise Models

$$p(\mathbf{f}) = \frac{1}{(2\pi)^{N/2} |\mathbf{C}_{\mathbf{f}}|^{1/2}} e^{-\frac{1}{2} \mathbf{f}^{\mathrm{T}} \mathbf{C}_{\mathrm{ff}}^{-1} \mathbf{f}}$$

$$p(\mathbf{n}) = p(\mathbf{y} | \mathbf{f}) = \frac{1}{(2\pi)^{N/2} |\mathbf{C}_{\mathrm{nn}}|^{1/2}} e^{-\frac{1}{2} (\mathbf{y} - \mathbf{H}\mathbf{f})^{\mathrm{T}} \mathbf{C}_{\mathrm{nn}}^{-1} (\mathbf{y} - \mathbf{H}\mathbf{f})}$$

$$\mathbf{f}_{MAP} = \arg \min_{\mathbf{f}} \left\{ \left(\mathbf{y} - \mathbf{H}\mathbf{f} \right)^{\mathrm{T}} \mathbf{C}_{\mathbf{nn}}^{-1} \left(\mathbf{y} - \mathbf{H}\mathbf{f} \right) + \mathbf{f}^{\mathrm{T}} \mathbf{C}_{\mathbf{ff}}^{-1} \mathbf{f} \right\} \quad = >$$

$$\left(\mathbf{H}^{\mathrm{T}}\mathbf{C}_{\mathbf{nn}}^{-1}\mathbf{H} + \mathbf{C}_{\mathbf{ff}}^{-1}\right)\mathbf{f}_{MAP} = \mathbf{H}^{\mathrm{T}}\mathbf{C}_{\mathbf{nn}}^{-1}\mathbf{y}$$

Relationship between Wiener and MAP estimates for Gaussian case

since

$$\mathbf{C}_{ff}\mathbf{H}^{T}\left[\mathbf{H}\mathbf{C}_{ff}\mathbf{H}^{T}+\mathbf{C}_{nn}\right]^{-1} = \left[\mathbf{H}^{T}\mathbf{C}_{nn}^{-1}\mathbf{H}+\mathbf{C}_{ff}^{-1}\right]^{-1}\mathbf{H}^{T}\mathbf{C}_{nn}^{-1}$$

$$\implies \mathbf{f}_{Wiener} = \mathbf{f}_{MAP}$$

Relationship between Wiener and CLS

if
$$\begin{bmatrix} \mathbf{H}^{\mathrm{T}} \mathbf{C}_{\mathbf{nn}}^{-1} \mathbf{H} + \mathbf{C}_{\mathbf{ff}}^{-1} \end{bmatrix}^{-1} \mathbf{H}^{\mathrm{T}} \mathbf{C}_{\mathbf{nn}}^{-1} = \begin{bmatrix} \mathbf{H}^{\mathrm{T}} \mathbf{H} + \alpha \ \mathbf{C}^{\mathrm{T}} \mathbf{C} \end{bmatrix} \mathbf{H}^{\mathrm{T}}$$

or $\mathbf{C}_{\mathbf{ff}} = \sigma_{\mathbf{n}}^{2} \left(\alpha \mathbf{C}^{\mathrm{T}} \mathbf{C} \right)^{-1}$ for $\mathbf{C}_{\mathbf{nn}} = \sigma_{\mathbf{n}}^{2} \mathbf{I}$

$$\implies$$
 $\mathbf{f}_{\text{Wiener}} = \mathbf{f}_{\text{CLS}}$

Topics not Covered

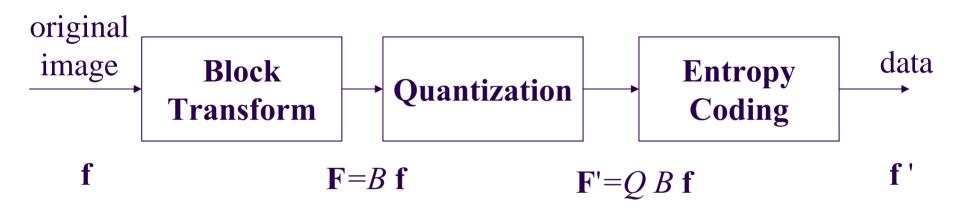
- Use of robust statistics
- Kalman filters
- Iteration adaptive algorithms
- Use of wavelets
- Multi-channel restoration
- Partially-known degradations (TLS approach)
- Signal-dependent noise models
- Non-linear degradation model
- Blind image restoration
- Video restoration

Recovery of Compressed Images and Video

Removal of Blocking Artifacts
 enhancement techniques
 restoration techniques

Removal of Additional Quantization Artifacts in Compressed Video

Transform Based Coder

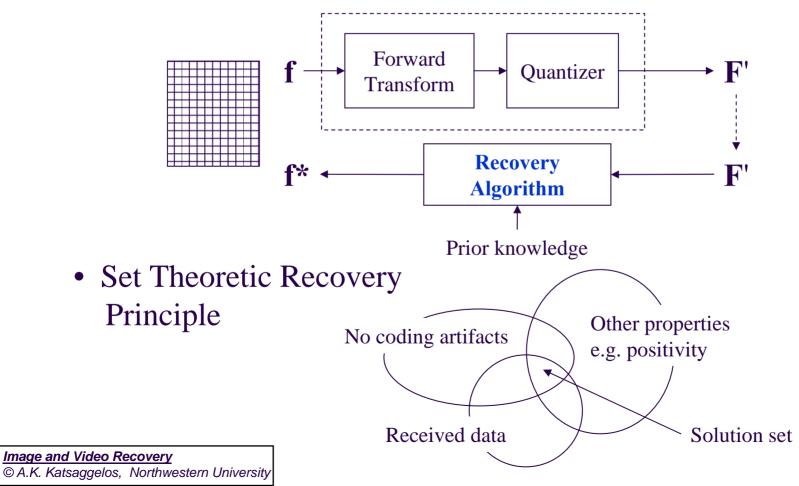


• "Conventional" decoder:

 $\mathbf{f}' = B^{\mathsf{t}} \mathbf{F}'$

Proposed Decoding Approach

• Image Decoding ⇔ Image Recovery



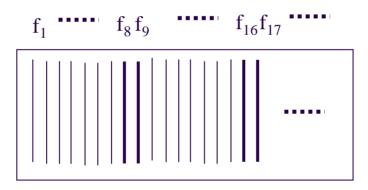
Projection onto Data Set C_d

• Easily verified that $\mathbf{F}' \in C_d$

$$P_{d}\mathbf{f} = B^{-1}\mathbf{F}$$
- where
$$\mathbf{F}_{n} = \begin{cases} \mathbf{F}_{n}^{min} & if \quad (B\mathbf{f})_{n} < \mathbf{F}_{n}^{min} \\ \mathbf{F}_{n}^{max} & if \quad (B\mathbf{f})_{n} < \mathbf{F}_{n}^{max} \\ (B\mathbf{f})_{n} & if \quad \mathbf{F}_{n}^{min} \le (B\mathbf{f})_{n} \le \mathbf{F}_{n}^{max} \end{cases}$$

Spatial Smoothness

- $C_s \equiv \{ \mathbf{f}: \mathbf{f} \text{ is smooth in the block boundaries } \}$
- Between Block Discontinuity



• Constraint Set

$$C_{s} \equiv \{ \mathbf{f} : || WQ\mathbf{f} || \le E \}, \text{ with } Q\mathbf{f} = \begin{bmatrix} \mathbf{f}_{8} - \mathbf{f}_{9} \\ \mathbf{f}_{16} - \mathbf{f}_{17} \\ \mathbf{f}_{24} - \mathbf{f}_{25} \\ \vdots \end{bmatrix}$$

$P_{\rm s}$:Projection onto $C_{\rm s}$

•
$$\mathbf{f} = {\mathbf{f}_1, \mathbf{f}_2, \dots, \mathbf{f}_N}, \quad \mathbf{\tilde{f}} = P_s \mathbf{f} = {\mathbf{\tilde{f}}_1, \mathbf{\tilde{f}}_2, \dots, \mathbf{\tilde{f}}_N}$$

• define
 $\mathbf{x} = \begin{bmatrix} \mathbf{f}_8 \\ \mathbf{f}_{16} \\ \vdots \end{bmatrix}, \quad \mathbf{y} = \begin{bmatrix} \mathbf{f}_9 \\ \mathbf{f}_{17} \\ \vdots \end{bmatrix}, \quad \mathbf{\tilde{x}} = \begin{bmatrix} \mathbf{\tilde{f}}_8 \\ \mathbf{\tilde{f}}_{16} \\ \vdots \end{bmatrix}, \quad \mathbf{\tilde{y}} = \begin{bmatrix} \mathbf{\tilde{f}}_9 \\ \mathbf{\tilde{f}}_{17} \\ \vdots \end{bmatrix}$

$$\widetilde{\mathbf{x}} = \frac{1}{2} (\mathbf{x} + \mathbf{y}) + \frac{1}{2} (\mathbf{I} + 2\lambda W^{t} W)^{-1} (\mathbf{x} - \mathbf{y})$$

$$\widetilde{\mathbf{y}} = \frac{1}{2} (\mathbf{x} + \mathbf{y}) - \frac{1}{2} (\mathbf{I} + 2\lambda W^{t} W)^{-1} (\mathbf{x} - \mathbf{y})$$

$$\widetilde{f}_{i} = f_{i}, \text{ for } i \neq 8 \cdot k \text{ or } 8 \cdot k + 1, k = 1, 2, \dots$$

$$|W(I+2\lambda W^{\mathsf{t}}W)^{-1}Q \mathbf{f}|| = E$$

Estimating W

• Principle: ω_i should be proportional to

- sensitivity of HVS to coding artifacts
- local correlation

Visibility of blocking artifact

- less visible in very bright or very dark areas
- less visible in intensity transition area, such as texture

An example:

$$\omega_{i} = \begin{cases} \frac{\sqrt{\mu_{i}}}{1 + \sigma_{i}} & \text{if } \mu_{i} < 128\\ \frac{\sqrt{255 - \mu_{i}}}{1 + \sigma_{i}} & \text{otherwise} \end{cases}$$

POCS-Based Decoding Algorithm

Constraint sets:

- C_{d} : data consistency
- $C_{\rm s}$: horizontal blocking
- C_s': vertical blocking
- C_r : pixel-intensity range
- Algorithm: $\mathbf{f}_k = P_r P_s' P_s P_d \mathbf{f}_{k-1}$
 - terminate when $|| f_k f_{k-1} || \le \varepsilon$
 - typically 3~5 iterations

Compressed at .29bpp

Reconstructed WLS

Image and Video Recovery © A.K. Katsaggelos, Northwestern University

Reconstructed POCS

Reconstructed alg. 2 + P

Reconstructed alg.1

Reconstructed alg. 3

Experimental Results

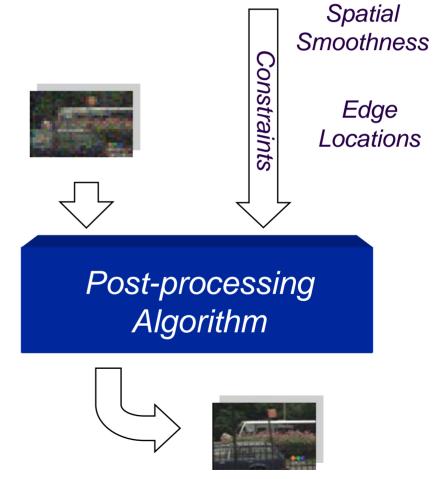
Video Recovery

MPEG-2 Encoded at 3.5Mbps

- Current video encoders introduce a variety of artifacts
 - Blocking artifacts dominate lower bitrate applications
 - Ringing artifacts appear as the bitrate increases
 - Visual quality increased by preand post-processing_

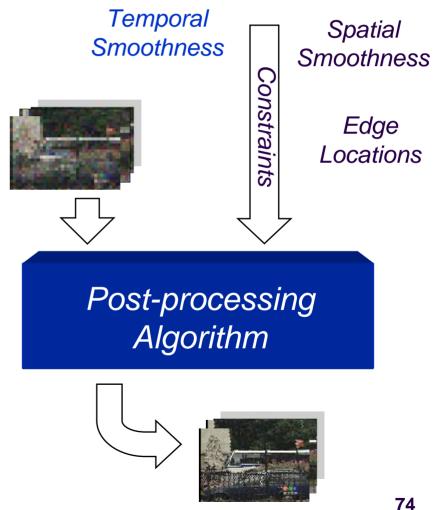
Post-processing

- Post-processing exploits traits of "good" images to reduce coding artifacts
 - Images are generally smooth
 - There are "good" and "bad" edges in the image



Post-processing

- Video postprocessing also incorporates properties of a "good" video sequence
 - Motion compensated frames should be similar



Problem Formulation

Find a recovered image as the minimizer of

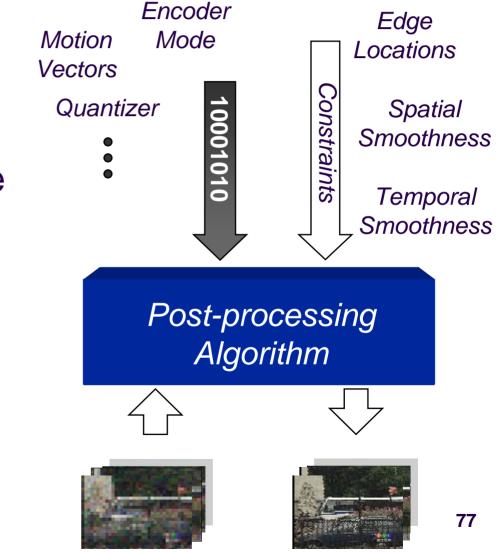
Iterative solution

$$\underline{f}^{k+1} = \underline{f}^k + \alpha \Big(\underline{g} - \Big((I + \lambda_1 Q_1^T Q_1 + \lambda_2 Q_2^T Q_2) \underline{f}^k + 2\lambda_3 \Big\| \underline{f} - \underline{f}_{mc} \Big\| \Big)$$

Compressed (3.5Mbps)

Use Information from Encoder

- Post-processing algorithm can incorporate *all* information available in the compressed bitstream
 - Quantizer step size
 - Encoder Mode Selection
 - Motion Vectors



Constrained Optimization

 We are now considering the postprocessing algorithm as a minimization of

 $J(\mathbf{f}_k) = ||\mathbf{Q}_1 \cdot \mathbf{f}_k||^2 + \lambda_1 ||\mathbf{Q}_2 \cdot \mathbf{f}_k||^2$

 $+\lambda_2 \|\mathbf{f}_k - \mathbf{f}_m\|^2$

 \bullet s.t. DCT(f_k) \in S₀

Measure of Smoothness between Blocks

Smoothness

within Block

Fidelity to Decoded

Image

Measure of Temporal - Continuity -- Motion Vectors are Known

P-Frame

P-Frame

Weighted Minimization

 Adding weight matrices to the cost function allows further smoothing adaptation

$$J(\mathbf{f}_k) = || \mathbf{W}_1 \cdot \mathbf{Q}_1 \cdot \mathbf{f}_k ||^2$$

Measure of Smoothness within Block

> Measure of Smoothness between Blocks

Fidelity to Decoded Image

+ $\lambda_2 || \mathbf{W}_3 \cdot (\mathbf{f}_k - \mathbf{f}_{\mathrm{mc}}) ||^2$

 $+ \lambda_1 || \mathbf{W}_2 \cdot \mathbf{Q}_2 \cdot \mathbf{f}_k ||^2 \leftarrow$

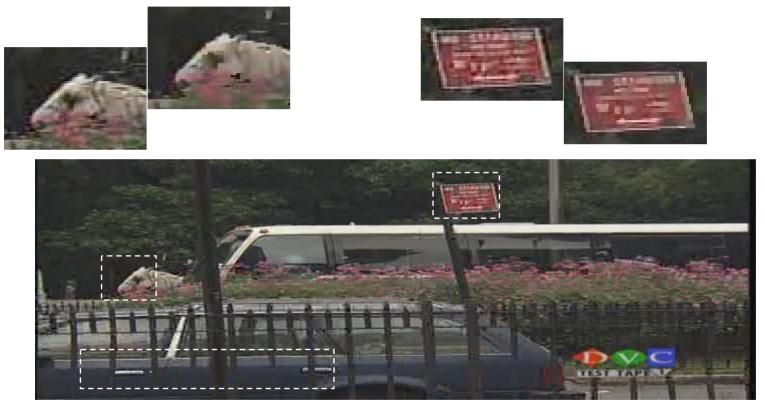
 $s.t. DCT(f_k) \in S_0$

Measure of Temporal Continuity -- Motion Vectors are Known₈₁

P-Frame

P-Frame

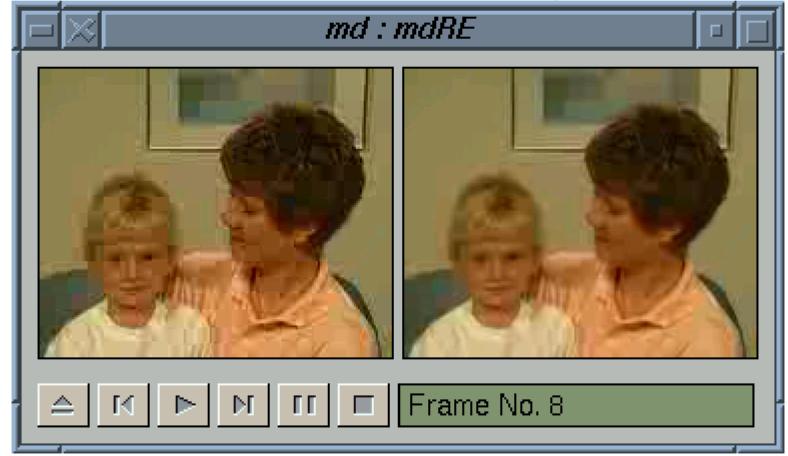
B-Frame



B-Frame

Compressed frame by H.261 at 30kbps (10 fps)

Recovered frame by gradient projection algorithm

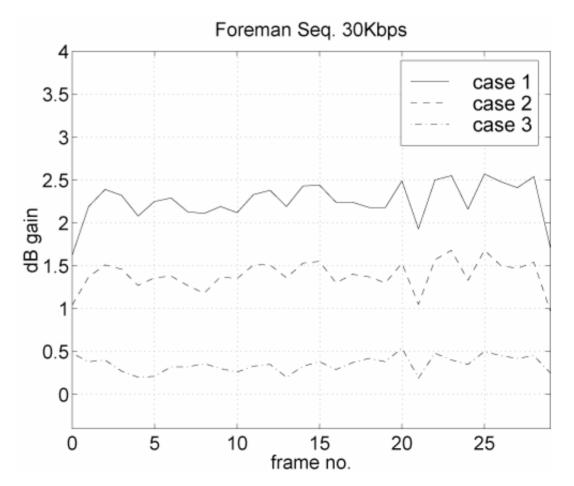


Empirical Performance Bound

Algorithm Performance on *foreman* sequence compressed at 30 kbps: Case 1: using pixel-basis motion vectors computed from the uncompressed frames

Case 2: using 4×4 pixel basis motion vectors computed from the uncompressed frames Case 3: using 4×4 pixel basis motion vectors computed from the

decompressed frames



Recovered frame; estimated regularization parameters; motion field estimated from uncompressed frame

Compressed frame by H.261 at 30kbps

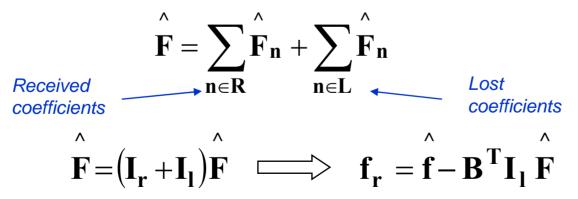
Error Concealment Problem Formulation

Block Transformed Image

 $\mathbf{F} = \mathbf{B}\mathbf{f}$ and $\mathbf{f} = \mathbf{B}^{T}\mathbf{F}$

• Quantized Version of Transform Coefficients $\hat{\mathbf{F}} = \mathbf{Q} [\mathbf{F}]$

Representation at Decoder



Problem Formulation (cont'd)

Find **f** belonging to $||\mathbf{f_r} - \mathbf{f}||^2 \le \varepsilon^2$ and $||\mathbf{C}\mathbf{f}||^2 \le E^2$

Minimize

Λ

$$M(\alpha, \mathbf{\hat{f}}) = ||\mathbf{f}_{\mathbf{r}} - \mathbf{\hat{f}}||^2 + \alpha ||\mathbf{C}\mathbf{\hat{f}}||^2$$

with
$$\alpha = \left(\frac{\varepsilon}{E}\right)^2$$

Regularized Iterative Solution

Transform Domain

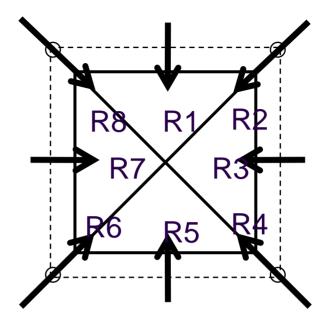
$$\hat{\mathbf{F}}_{k+1} = \beta \left[K(\alpha) \mathbf{B} - \alpha \mathbf{I}_{\mathbf{I}} \mathbf{B} \mathbf{C}^{\mathsf{T}} \mathbf{C} \right] \mathbf{F}_{\mathbf{r}} + \left[\mathbf{I} - \beta K(\alpha) \right] \hat{\mathbf{F}}_{\mathbf{k}}$$

Spatial Domain

$$\hat{\mathbf{f}}_{k+1} = \beta \mathbf{B}^{\mathrm{T}} \left[K(\alpha) \mathbf{B} - \alpha \mathbf{I}_{\mathrm{I}} \mathbf{B} \mathbf{C}^{\mathrm{T}} \mathbf{C} \right] \mathbf{f}_{\mathrm{r}} + \left[\mathbf{I} - \beta \mathbf{B}^{\mathrm{T}} K(\alpha) \mathbf{B} \right] \hat{\mathbf{f}}_{\mathrm{k}}$$

with
$$K(\alpha) = \mathbf{I} + \alpha \mathbf{I}_{\mathbf{I}} \mathbf{B} \mathbf{C}^{\mathsf{T}} \mathbf{C} \mathbf{B}^{\mathsf{T}} \mathbf{I}_{\mathbf{I}}$$

Oriented High Pass Operator



Cell Burst

- All Information in a Block is Lost Considerable Discontinuity between
- Burst and Neighboring Blocks
- Replacement of DC Value from Neighboring Blocks (α trim mean)

Compressed at .8 bpp

Restored 2D Laplacian

8% error, DC only preserved

Restored oriented smoothness operator

Burst errors

Modified initial image (a=7)

Restored image

Intra Concealment

Described algorithm

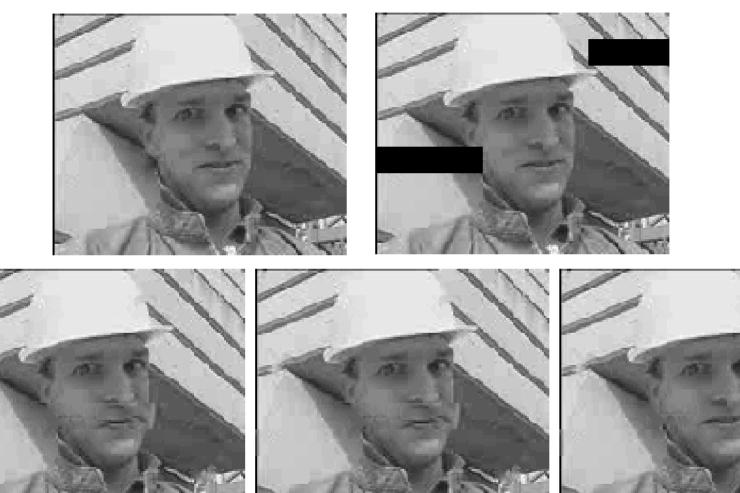
Algorithm by Schwab

Intra Concealment

Described algorithm

Algorithm by Schwab

Inter Concealment



average

Image and Video Recovery © A.K. Katsaggelos, Northwestern University median

new vector

Discussion

- prior knowledge: critical
- blind restoration: still a formidable problem
- adaptivity (spatial, temporal, frequency, iteration) important
- New applications are driving progress in the field